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This paper prasents an alternative formulation 1o the primitive
variable form of the Navier-Stokes equations. The approach is based on
the use of the velocity and vorticity variables as a logical extension of
the stream function-vorticity method which is quite efiective for
two-dimensional flows. Second-order equations are obtained for the
variables and discretization is through a weak-Galerkin finite element
method, followed by Newtan lincarization. The velocity and vorticity com-
ponents are solved simultancously by a direct solver. The scheme is
demonstrated for two-dimensional and three-dimensional incompressible
and subsonic internal enclosed flow problems,  © 1993 Academic Press, Inc.

L. INTRODUCTION

The numerical simulation of incompressibie and com-
pressible viscous flows remains an area of high activity. The
demand for efficient viscous flow methods for the analysis
and design of aecrodynamic components is growing at an
unprecedented pace. Finite difference, finite volume and
finite element methods are continuously being developed to
respond to these needs.

There is no doubt that primitive variables formulations of
the Navier-Stokes equations enjoy a high prominence for
solving these equations, cspecially for three-dimensional
probiems. For two-dimensional and axisymmectric problems
other alternatives exist, such as the stream function-
vorticity approach which climinates pressure as a vatiable
and, in addition, conserves mass identicaily. Starting with
the work of Campion-Renson and Crochet [1], several
authors [2-47] have refined the application of the finite
element method to the stream function—vorticity approach
to the point where, for incompressible high Reynolds and
Rayleigh number flows, in complex geometries, artificial
viscosity and wall vorticity formulae are completely dis-
pensed with. These approaches are invariably embedded in
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a Newton lincarization and a direct solver, yiclding very
stable and fast convergence. The stream function~vorticity
method has also been extended to multiple connected
domains [5], subsonic [6], transonic [7], and unsteady
flows [8).

The extension of such alternative formulations to
primitive variables, for 3D [lows, has been made but is, to a
large degree, not simple. For example, a vector potential
[9-11], or a two, and sometimes three, stream functions
approach is used to represent arbitrary three-dimensional
flows [ 12-167. The imposition of the boundary conditions,
especially for internal flows, is quite complicated.

A logical extension of the stream function-vorticity
approach could, however, be done through the velocity-
vorticity formulation, initially suggested by Fasel [17] for
two-dimensional flows and by Cook [I8] and Dennis,
Ingham, and Cook [19] for three-dimensional Navier—
Stokes equations. Efforts in that direction have increased and
incompressible velocity—-vorticity approaches, using finite
difference and finite element schemes, have been proposed
[20-27]. Compressible flow approaches, by a finite element
method, have also been developed in Refs. [26, 27] for two-
dimensional cases.

1I. THEORETICAL FORMULATION

Governing Equations

The governing equations for three-dimensional, steady,
compressible subsonic viscous flow, in terms of the primitive
variables (V, p, p), are

Continuity,

VpV)=0; 1)
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Momentum,
p(V-VIVLV(V.pV)

1 2
= -Vpt—-—| —=V(uV-V
p+Re[ 3 (p )

+qu(VxV)+2(V-,uV)V:|, (2)

where Re is the Reynolds number. These equations are
complemented by the energy equation and the equation of
state,

Using the vorticity definition and the continuity
equation, a second-order form of the velocity—vorticity
equations, appropriate for a finite element formulation, can
be obtained. For the velocity equations we have

VxpQ=Vx({(pVxV)=Vx[Vx(pV)—VpxV]
=VIV-(pV)]=V(pV)=Vx (Vpx V)
= ~V(pV)-Vx(Vpx V)

or

VipV)+VxpQ+Vx(VpxV)=0. (3)

The vorticity transport equation can be derived by taking
the curl of the momentum equations, hence eliminating the
pressure as a variable, obtaining
VH{uQ)—Re[(pV -V)Q - (2-V)pV+8°]+8*=0,
4)

where

S* =LVpx (VV?)
§% =2V % gV2V + V x (Vi - V)V — V{4 €0)} + V(€2 . Vi)

=84' 48474+ 8#7  in Cartesian coordinates.

Weak-Galerkin Form

The weighted residual form is obtained by minimizing the
residuals of the system of equations over the solution
domain. Each equation is multiplied by a weight function,
W,, and integrated over the domain as follows:

f WYIVHpVI+ VX pQ+Vx (Vpx V)]dV=0 (5)

| woIv(u@) - Re((pV V)@
14

—{Q-V)pV+ 5} +5“1dV=0. {6)
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The weak forim of these equations is obtained after integra-
tion by parts of second-order terms:

j [VWY . V(pV)— WY (Vx pQ)+ VIWY x (Vo x V)] dV

~$ WY[n-V(pV)+nx (Vpx V)] dS=0 7

[ [vwe V(@) + WP Re((pV - V)02
vV
—(Q-V)pV + 5} + WESH 4 WRSH L RSH ] ay
ﬁ§ Wen-V(uQ)+ S dy dz
S

+ 5" dzdx+ 8§ dx dy]=0. (8)
Newton Linearization

The nonlinear system of Egs. (7), (8) is lincarized by
a Newton method. All three velocity components with all
three vorticity components are solved simultaneousty. Each
vector is expressed in A4 form as

AV =Vl
4Q=Q"1 - Q"

9)
(10)

Upon substitution in Eqgs. (7), (8) and retaining only first-
order terms, the system of equations can be re-expressed as

L [VWY.V(p AV)— WY(Vxp A0)
+IWY x(Vpx AV)]dV = —(R), (11)
fV [VW2.V(1 AQ) + W2 Re{(pV.V) 4Q
+(p AV -V)Q—(Q-V) p 4V —(4Q-V) pV + 487}
+ WEASH + W2 ASH L W2 ASH ] dV = ~(R)q,
(12)
where
ASP =VpxV(V.4V)
AS*=2{Vx V> AV +V x (Vu-V) 4V

—VudQ} +V(Vu-4Q)
=482 + 4817+ 482

and R,'s are the residuais, at node i, of the discretized
SOVETning equations,
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Finite Element Discretization

The geometry discretization is based on curvilinear
isoparametric twenty node elements. For equal degrees of
approximation of vorticity and derivatives of velocity, the
former is represented by trilinear shape functions, while the
velocity is approximated by triquadratic shape functions.
Hence for the velocity vector,

26

V=3 N}V, (13)
i=1
while for the vorticity vector,
8
Q=3 NPQ,. (14)

i=1

The weight functions, W,, in the Galerkin finite element
scheme are chosen to be the corresponding shape functions.
Substituting and assembling over the elements, one obtains
the set of discretized equations for the velocity vector,

E 20 8
5 [z (ko ]y AV, + 3 [km],,-m,-]= —(R)y, (1)

e=1Lj=1 j=1

where, for example, for the w-velocity component,

[k:ij=J'V NV pzN;, dV

(k:Ju=] Mo NY av

Ukidu= | [o(NENY 4 NN+ NN

+NY.p.NY1dV

[k, = [ (WY pN 2, + NY p, N dV

[khe= = [ (VNS ANTp NV

Jx

(k851.,=0.
The following set of discretized equations is obtained for the
vorticity vector

20

E 8
) [ Y. [kanl; 49+ 2 [kﬂV]ijAVjJ= —(R)q,
e= j=1 =1

| J (16)
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where, for example, for the Q, -vorticity component,

(k:Jay=] [NPRe(p, N} ~pQ N},

_pxnlN}r_pQZNJ‘{y_prZN}] _pQ3N}.rz
_pzﬂ.’thv +p}‘uer + pyuzva
_pzuNj\,fy—p:uyN;r)
+2NP A, N —u.NY )] dV
[kt Ja=] [NTRe(pf, N +p, 0N},
+pr:N},_szN_:yq_pzvyNy)
+ 2N?}'(“}'Nfz - -uZN;:y)] dv
k5 do,=| (NP Re(p@y NJ+p,wN ],
+pysz}{—pZWN;’y_pzwyN;’)
+AND (U, NY . —u.NY )1 dV
[k2],, :jV [N UNE 4 N2 (N +u, N D)
+NLUNT A+ u. NP
+ NP Re(puN T + poNT + pwN L
—p uNT—pu N1 dV
[k831a,= | [NTRe(p,uNf +pu,NF)

+N® N ay

I3

(k@] = — J,, [N® Re(p,uN®+ pu, N

+ Ny NO] gy,
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INI. BOUNDARY CONDITIONS

Inlet and Exit Boundary Conditions

For through-flow type problems, the velocity distribution
is specified at iplet and the vorticity is therefore known:

V=V(y,z)
=Q(y, z).

(17)
(18)

In the derivation of the second-order velocity equations (3),
while it has been implicitly recognized that the gradient of
the continuity equation is zero, the continuity equation
itself is no longer part of the system. Mass continuity is thus
accounted for only to within an arbitrary constant [22 ] and
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must therefore be expliciily imposed, at least at one point,
to remove the arbitrariness of the solution. This can be done
by using the continuity equation to modify the original
_surface integral of the normal velocity eguation at exit
{Eq. (7)). For example, for an exit normal aligned with the
x-axis, the original surface integral

$ WYL(pw),+ 01 dy dz (19)
S
is modified, using the continuity equation, to yield

~§ WYLpo),+ (pw). dy dz. (20)

For the transverse velocity equations, the exit boundary
condition is that the normal derivative vanishes. This is
accounted for by dropping the first term in the surface
integral of the transverse velocity equations. There will,
however, be a remaining term that must be evaluated at exit.
The vorticity boundary condition is applied by dropping
the first term of the surface integral of Eq. (8), since on the
exit boundary the normal derivative of the vorticity is
assumed to be zero:
(1Q),=0. (21)
The remaining viscosity source terms in the surface integrals
are neglected at the exit.

Wall Boundary Conditions

On walls, no-slip and no-penetration are implemented as
Dirichlet conditions on the velocity components:

u=0 or u=u(S) (22)
v=0 or v=0(S) {23)
w=0 or w=w(S} (24)

The vorticity has no explicit wall boundary condition and
its definition is used in the following manner at wails:

| Nere-vxviar=o, (25)
.

IV. SOLUTION PROCEDURE

Stokes flow (Re=0) is used as an initial guess for fiows
at all Reynolds nembers. All velocities and vorticities are
solved simultaneously. For high Reynolds numbers the
solution may require marching through increasingly higher
Reynolds numbers. To complete the iteration, for subsonic
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flow, the density needs to be updated and this requires the
solution for the pressure. This is obtained from a Poisson
equation derived by taking the divergence of the momentum
equations,

V- (Vp+Fi=0, (26)
where F is the remainder of the momentum Eqgs. (2).
The weighted residual form of the pressure equation is

J W,V - (Vp+F)]dV=0. 7

Upon integration by parts, one obtains
j [VW, (Vp+F)] dV:I [W,(Vp+F).n]ds. (28)
Vv 5

It is seen that the surface integral contains the normal
momentum equation. Hence, by neglecting this surface
integral on boundaries where the pressure is unknown, the
normal momentum equation is automatically satisfied. Such
natural boundary conditions of finite element methods are
an advantage over schemes where unknowns at a wall may
have to be extrapolated from their valves in the field. To
avoid the arbitrariness of the pressure Poisson problem, the
pressure level is set by specifying its value at one point of the
flow.

The temperature is updated using the energy equation,
once the pressure has been determined. For most of the test
cases, the assumption of constant total enthalpy along
streamlines was used:

H,=C,T+iV.V. (29)
This simplified energy equation is a reasonable approxima-
tion for the viscous energy equation in the absence of heat
exchange.

The complete energy equation is solved for in a few test
cases, in the form

Re(pV - -V)C, T)~%VA(kVT)= & —Re(pV.V¥). (30)

The weighted residual form of the encrgy cquation, after
integration by parts, is

f [W;Rc(pV-V)(C[,T)+—I§;VW,--(JCVT)] dv
=j (W,(®—Re(pV-V))]dV

1
+3§S W, 5= [n-k VT ds.
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The boundary conditions are that either the temperature or
the heat flux is specified. The surface integral contains the
heat flux allowing a natural implementation of the latter
boundary condition.

The density is evaluated from thé pressure and tem-
perature, using the equation of state for a perfect gas.
The viscosity is finally obtained, uwsing the empirical
Sutherland’s law for air [287:

L_(i)‘-5(Tm+110°K
B AT T+110°K /'

The conductivity and specific heat coefficients are assumed
constant.

(32)

V. RESULTS

In the present paper, results for laminar incompressible
two-dimensional flow are first presented to serve as a com-
parison against other well-tested numerical methods. The
case investigated is the flow in a driven cavity at Re = 100
and 400. The same case is then analyzed in three dimen-
sions, at Reynolds number 100 for both incompressible
and compressible flows and at Reynolds number 400 for
incompressible flows, and then compared to the results of
other numerical methods.

For the two-dimensional case,
convergence to an L, residual of 10~

Fig. 1 shows that
& is attained in 11

.
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L-2 ResiQual

-10 T T T T T 1
0 2 4 6 8 10 12

Iteration

FIG. 1. Convergence history for 21D driven cavity, Re =400,

iterations on a (15# 15) element grid. The initial guess
needs about five iterations to adjust, due to the corner sepa-
ration zones, before quadratic convergence is established.
Figures 2 and 3 compare equi-vorticity contours and
centerline velocities of the present solution to results using
the stream function—vorticity method [4].

\ |
|

F1G. 2. Equi-vorticity lines for 2D driven cavity, Re = 400. a. velocity-vorticity, b. stream function—vorticity.
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FIG. 3. Centerline velocities for 2D driven cavity, Re = 400.

The three-dimensional driven cavity problem is analyzed
at a Reynolds number of 100, This is carried out for incom-
pressible flow and for 1id Mach numbers of 0.2, 0.5, and 0.3.
This problem is also analyzed at a Reynolds number of 400
for incompressible flow.

For both the incompressible and subsonic cases, the
initial iteration is for incompressible Stokes flow, while
subsequent iterations are at the target Reynolds number,
Figure 4 compares the convergence history for the incom-
pressible and compressible cases. For incompressible flow,
quadratic convergence is attained and machine accuracy

5.000
T T T
- —- - M=0Q.8 (H=constuan1)
¢.000 \\- —
' " —e—. M =0.5 (H=constani)
L-2 RES, '\‘
-5.000 ‘\‘_. — -— M=02(H=constanty _ |
L)
i .
-\ N — Incompressible
. T H
-10.0¢ _l“ v
AT
VoL
-15.00 R W A . _—
| S— :
\ Y
vl N
-20.00 M LU
vV
[y \
\ \
\ \ '
-25.00 1 4
-30.00
0000 5000 1000 1500 2000 2500 3000 3500
ITERATION

FIG. 4. Convergence history for 3D driven cavity, Re = 100.
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1s reached in six iterations. For compressible flow, the
pressure, density, temperature, and viscosity are updated in
a lagged manner from the velocity—vorticity system, and
linear convergence ensues. It must be remarked, however,
that the convergence history is still impressive,

In Figure 5, the convergence history is compared for two
grids, with the finer one containing eight times the number
of elements of the coarse grid. The convergence rate is
weakly affected by grid refinement, requiring three
additional iterations to reach maching accuracy.

Figure 6 shows the cavity centerline velocities on the
symmetric plane for the two- and three-dimensional
incompressible cases and compares the 3D results to Ku,
Hirsh, and Taylor [29]. Figure 7 shows the effect of
compressibility on the cavity centerline velocities on
the symmetric plane. Figure 8 shows the normal vorticity
contours for the three mid-planes in the incompressible
three-dimensional case. These compare very well with the
results presented by Osswald, Ghia, and Ghia [21].

For the compressible three-dimensional case, the velocity
vectors are shown in Fig. 9 and the density contours in
Fig. 10. The trends in the velocity vectors are similar to
those presented for incompressible flows.

The compressible three-dimensional cases were redone
using the full energy equation instead of the constant total
enthalpy assumption. A constant temperature 1s specified on
the moving lid and zero heat flux is imposed on the station-
ary walls. The convergence history is shown in Fig. 11
Compared to the constant total enthalpy cases (see Fig. 4),
convergence is slower and less affected by compressibility.

5,000

b

= — - E*8*4 (H=consmanr)
0.000 \\ —

L-2 RES. — 4%4*2 (H=constant)

-5.000

-10.00 A\

-15.00

-20.00 ’_ -

-25.00

-30.0¢
0.000

5000 1000 1500 2000 2500 3000 3500

ITERATION

FIG. §. Convergence history for 3D driven cavity, effect of grid size,
Re=100, M =08.
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FIG. 6. Centerline velocities for 3D driven cavity, Re = i00.
0.000
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Figure 12 shows the effect of compressibility on the cavity
centerline velocities on the symmetric plane. The trends in [*EL-IOI i

the centerline velocities are similar to those for the constant
total enthalpy cases {see Fig. 7). Temperature contours in
the symmetric plane are compared to those of the constant
total enthalpy cases in Fig. 13,

For the three-dimensional driven cavity problem for
incompressible flow at a Reynolds number of 400, a finer
grid is required. Due to the memory requirements of the
direct solver for these fine grids, an iterative solver was used.
The iterative solver is based on Arnoldi’s method, which is
a Krylov subspace method for large non-symmetric linear
algebraic systems of equations [30]. It is related to the
GMRES method and uses the Gram—Schmidt procedure,
rather than the modified Gram—Schmidt procedure, to con-
struct the required orthonormal basis of the Krylov sub-
space, relying on two applications of reorthogonalization
[31] to ensure the accuracy and stability of the orthogonal-
ization process.

FIG. 7. Centerline velocities effect of

compressibility, Re = 100.

for 3D driven -cavity,

Three grids were used, the two coarser grids solved using
the direct solver and the finer grid using the iterative solver.
The convergence history for all three grids is shown in
Fig. 14. Since the iterative solver is not made to converge
completely at cach Newton iteration, the overall stability of
the method changes. For this particular case, marching in
Reynolds number was required. Intermediate solutions at
Reynolds numbers of 100 and 200 were obtained before
starting at the final Reynolds number of 400. Figure 15
shows the cavity centerline velocities on the symmetric
piane for the two- and three-dimensional cases and com-
pares the 3D results to Ku, Hirsh, and Taylor [29] and
Agarwal [20]. Figure 16 shows the normal vorticity
contours for the three mid-planes.

TABLE I

Maximum Absolute Mass Error

Re M Grid Energy Max mass error Location

100 Incomp. BxBxd 0.274E-03 096, 0.86, 042
100 02 8x84+4 H =const 0.296£-03 0.96, 0.86, 042
100 0.5 Bx8x4 H =const 0.408E-03 0.96, .86, 0.42
100 0.8 82824 H=const 0.594E£-03 096,086,042
100 0.2 8x8x+4 Energy equation 0.283E-03 096, 0.86,042
100 0.5 Bx8+4 Energy equation 0.392E-03 096, 0.86, 0.42
100 08 Bx84+4 Energy equation 0.5376E-03 096, 0.86, 042
400 Incomp. Be8#4 0.288E-03 056, 0.86, 0.42
400 Incomp. 4+ 14«7 0.962E-04 003,097,003
400 Incomp. 3023015 0.144E-04 0.01, 099,048
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FIG. 8. 3D driven cavity, Re = 100, mid-plane-normal vorticity lines. a. streamwise, b, spanwise, ¢. horizontal.




FIG. 9. Velocity vectors for 3D driven cavity, Re =100, M =0.5.

The continmty equation is not solved for explicitly, as
shown in Section III. To assess the error in mass conserva-
tion for each element in the domain the following measure
was evaluated:

Et. . = L (V -n) dSs.

The maximum absolute error from all the elements is
tabulated for each test case in Table 1. The trends show that
the mass conservation error increases with Mach number,

CONTOUR
LEVELS
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85800 . (0
.A7508

. 18006 § .
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150389 |

. 17568
. 20000 /‘
.225608

25008
27500

37508 Lif] |/ ¥
1]
. 37600 yA ! 5.1
1

.40008 || O,
. 42508 7 / !
. 15009 F +

b b ek e bR M e et e P ek e e s

FIG. 10. Density contours for 3D driven cavity, Re =100, M =0.5.
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FIG. 11. Convergence history for 3I driven cavity, energy equation,
Re = 100.

increases slightly with Reynolds number, decreases with
grid size, and is slightly lower for the full energy equation
than for the constant total enthalpy assumption.
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7.000 —
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3.000 .
N A
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2,000
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0.000
4000 -2000 0000 2000 4000 6000 8000 10.00
u
{*E01]
FIG. 12. Centerline velocities for 3D driven cavity, effect of

compressibility, energy equation, Re = 100
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FI1G. 13. 3D driven cavity, Re = 100, constant temperature lines, symmetric plane. a. energy equation, b. constant total enthalpy.
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FIG. 14, Convergence history for 3D driven cavity, Re =400. FIG. 15, Centerline velocities for 3D driven cavity, Re =400,
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FIG. 16. 3D driven cavity, Re = 400, mid-plane-normal vorticity lines. a. streamwise, b. spanwise, c. horizontal.
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¥I. CONCLUSION

In conclusion, finite element solutions of the three-dimen-
sional Navier—Stokes equations in velocity—vorticity form
have been obtained for laminar compressible flow. Solving
the velocity—vorticity system simultaneously by a Newton
method leads to a fast convergence rate for the test cases
shown.

Current work concerns extending the methodology to
turbulent high Reynolds number flows. For the large
velocity—vorticity system required, iterative solvers and
domain decomposition methods, on parallel computers, are
being studied.
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